CARTA DESCRIPTIVA (FORMATO MODELO EDUCATIVO UACJ VISIÓN 2020)

I. Identificadores de la asignatura

Instituto: IIT Modalidad: Presencial

Departamento: Física y Matemáticas

Materia: Física General III

Programa: Ingeniería Física Carácter: Obligatoria

Créditos:

8

Clave: CBE282906

Tipo: Curso

Nivel: Intermedio

Horas: 64 Totales **Teoría:** 81% **Práctica:** 19%

II. Ubicación

Antecedentes: Clave

Física General II CBE112206

Consecuente:

Óptica CBE

Electrodinámica I CBE283006

III. Antecedentes

Conocimientos: Conocimientos generales de álgebra vectorial y cálculo.

Habilidades: Dominar las técnicas de integración y derivación simples.

Actitudes y valores: Inclinación a la investigación y el estudio teórico.

IV. Propósitos Generales

Los propósitos fundamentales del curso son:

El entendimiento de los conceptos del electromagnetismo y sus aplicaciones.

V. Compromisos formativos

Intelectual: El alumno desarrollará habilidades de razonamiento abstracto, análisis y solución de problemas al aplicar los conceptos elementales de la física en distintos contextos; práctico, tecnológico, científico y aplicado.

Humano: Se fomentará que el alumno sea proactivo y propositivo.

Social: El alumno comprenderá la relación entre sociedad, tecnología y la aplicación de los conceptos adquiridos en el curso.

Profesional: El estudiante adquirirá los conocimientos básicos y desarrollará las habilidades necesarias para el análisis y solución de problemas simples de la física y la ingeniería, mismos que son fundamentales para el resto de su formación y ejercicio profesionales.

VI. Condiciones de operación

Espacio: Aula tradicional

Laboratorio: Laboratorio de Física Mobiliario: Mesa y sillas

Población: 20 - 25

Material de uso frecuente:

A) Proyector

B) Computadora portátil

No

Condiciones especiales: aplica

VII. Contenidos y tiempos estimados			
Temas	Contenidos	Actividades	
Tema 1: Ley de Coulomb 5 sesiones (10 hrs.)	Carga eléctrica. Principio de superposición. Enuncie la ley de coulomb. Conservación y cuantificación de la carga. Comparación con las fuerzas gravitacionales. Campo eléctrico, para un sistema de cargas puntuales. Para un disco cargado, para un anillo, una línea cargada. Dipolo Eléctrico.	Prácticas, análisis y discusión de problemas, redacción de reporte de investigación.	
Tema 2: Ley de Gauss 5 sesiones (10 hrs.)	Definir el concepto de flujo eléctrico. Enuncie la ley de Gauss, compárelo con la ley de Coulomb. Problemas con simetría esférica cilíndrica y plana.	Prácticas, análisis y discusión de problemas, redacción de reporte de investigación.	
Tema 3: Potencial Eléctrico 5 sesiones (10 hrs.)	Defina lo que es una superficie equipotencial. Calculo del potencial a través del campo eléctrico. Potencial eléctrico para un sistema de cargas puntuales, para un dipolo eléctrico, para una distribución de carga continua, y de un conductor cargado aislado. Dieléctricos.(potencial de las cargas inducidas). Diferencia de potencial relacionarlo con la energía potencial eléctrica y trabajo.	Análisis y discusión de problemas, redacción de reporte de investigación.	
Tema 4: Capacitancia	Condiciones entre el límite de dos dieléctricos, para campos eléctricos con componentes	Análisis y discusión de problemas, redacción de	
4 sesiones (8 hrs.)	tangenciales y normales.	reporte de investigación.	

	Capacitancia. Condensadores en paralelo y en serie. Condensadores con dieléctricos.	
Tema 5: Ley de Ohm 5 sesiones (10 hrs.)	Corriente eléctrica. Ec. De continuidad. Densidad de corriente (conductividad y velocidad de arrastre). Resistencia y resistividad. Ley de ohm Ley de Kirchoff para mallas eléctricas.	Análisis y discusión de problemas, redacción de reporte de investigación.
Tema 6: Campo Magnético 3 sesiones (6 hrs.)	Definición de campo magnético. Ley de Biot-Savart. Fuerza de Lorentez.	Prácticas, análisis y discusión de problemas, redacción de reporte de investigación.
Tema 7: Ley de Ampere 2 sesiones (4 hrs.)	Fuerza entre dos corrientes paralelas Enuncie la ley de ampere. Solenoides y tiroides.	Análisis y discusión de problemas, redacción de reporte de investigación.
Tema 8: Ley de Inducción de Faraday y Leyes de Maxwell 2 sesiones (4 hrs.)	Enuncie la ley de inducción de faraday Ley de Lenz Circuitos , RCL Enuncie las leyes de Maxwell en forma diferencial.	Análisis y discusión de problemas, redacción de reporte de investigación.

VIII. Metodología y estrategias didácticas

Metodología Institucional:

- a) Elaboración de ensayos, monografías e investigaciones (según el nivel) consultando fuentes bibliográficas, hemerográficas y en Internet.
- b) Elaboración de reportes de lectura de artículos en lengua inglesa, actuales y relevantes.

Estrategias del Modelo UACJ Visión 2020 recomendadas para el curso:

- 1. aproximación empírica a la realidad
- 2. búsqueda, organización y recuperación de información
- 3. comunicación horizontal
- 4. descubrimiento
- 5. ejecución-ejercitación
- 6. elección, decisión
- 7. evaluación
- 8. experimentación
- 9. extrapolación y transferencia
- 10. internalización
- 11. investigación
- 12. meta cognitivas
- 13. planeación, previsión y anticipación
- 14. problematización
- 15. proceso de pensamiento lógico y crítico
- 16. procesos de pensamiento creativo divergente y lateral
- 17. procesamiento, apropiación-construcción
- 18. significación generalización
- 19. trabajo colaborativo

IX. Criterios de evaluación y acreditación

a) Institucionales de acreditación:

Acreditación mínima de 80% de clases programadas

Entrega oportuna de trabajos

Pago de derechos

Calificación ordinaria mínima de 7.0

Permite examen único: no

b) Evaluación del curso

Acreditación de los temas mediante los siguientes porcentajes:

Contenido del Curso

Trabajos de Investigación 20% Exámenes parciales 55% Prácticas 15% Participación 10% Total 100 %

X. Bibliografía

- 1. Young, Hugh; Freedman, Roger. "Sear-Zemansky Física Universitaria volumen 2", Pearson Addison Wesley, decimosegunda edición. 2012.
- 2. Serway,Raymond," Fundamentos de física vol. 2", Cengage Learning, novena edición. 2013.
- 3. David Halliday, Robert Resnick, Kenneth S. Krane,. "Fundamentos de física vol. 2", 8ed.Grupo Editorial Patria, 2011.

X. Perfil deseable del docente

Dr. en Física o mínimo Maestría en Física

XI. Institucionalización

Responsable del Departamento: Mtro. Natividad Nieto Saldaña Coordinador/a del Programa: Dr. Juan Francisco Hernandez Paz

Fecha de elaboración: Elaboró: Agosto-Diciembre 2012

Fecha de rediseño: 1 de Enero 2016

Rediseño: Dr. Sergio Flores Garcia, Dr. Sergio Terrazas Porras, M.C. Jesús Manuel Sáenz

Villela, Dr. Hector Alejandro Trejo Mandujano, Dr. Luis Leobardo Alfaro Avena.